CALCULATION OF THE TURBULENT CHARACTERISTICS
OF CHANNEL FLOW WITH ROTATING INNER CYLINDER

B. P. Ustimenko

An attempt to analyze the turbulent characteristics of flow in an annular channel with rota-
ting inner cylinder is described which is based on the use of the pulsating-energy-balance
equations in various directions of motion. The analytical results are compared with the
experimental mean velocity distribution, the pulsation intensity, the correlation, and other
data.

Turbulent flow in channels between two coaxial rotating cylinders was analyzed analytically in 2 num-
ber of papers. Most of them are based on the assumption of small channel curvature [1, 2], while in others
[3-5] the curvature is taken into account by various approximate means. On the basis of these papers, the
mean velocity distribution in the flow and the shear stress can be calculated with satisfactory accuracy.

More complete information can be obtained by means of the conventional equations of mean motion in
combination with the pulsating-energy-balance equations (for the total energy and the energy of the indivi-
dual velocity components). Analysis of these additional equations yields, in particular, data on the distribu-
tion not only of the mean characteristics but also the pulsation characteristics in the flow.

1, Basic Equations. Let us examine the two-dimensional annular incompressible turbulent flow,
statistically homogeneous on cylindrical surfaces of constant radius. For such a flow, the following rela-
tions are fulfilled;

v = v, v=vr, vQ=<U¢>—’rV¢,’» p=<p>+p
{v,> = =0, <(od,= <o, (")
<p> = (p ()

while the derivatives of the quantities averaged over the x and ¢ coordinates are zero. Here, (vy), (),
(vl (P} Vg', V4, V), D' are the averaged and pulsation values of the axial, radial, and tangential velo-
city-vector and static-pressure components; { ) is the sign for averaging with respect to time (after
Reynolds).

with allowance for these relations, the system of differential equations for the components of the
correlation tensor (vi' vj') has the form
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In the system of equations (1.1} ~(1.6), the terms associated with convective turbulent-energy transport
by mean motion and with its viscous and turbulent diffusion are omitted owing to their smallness [6-8].

In accordance with [6], we make use of the approximate semiempirical relations for the dissipation
of pulsating motion

3
v, O/ v 2 B (1.7)
— % J — 173 st B .
D=2 X <6x. ax.>_wl R
k=1 B TR
and for the energy exchange between the various pulsation components

Lo (G v D= (wp—s,558), £= s (1.8)

i=1
Here E is the kinetic energy of pulsations; [ is the scale of turbulence; ¢, c;, and k are empirical
constants; 6. 1s the Kronecker delta; and i, j =1, 2, 3.

Substltutmg the sum of the first three equations for the first equation in (1.1)<(1.6), and the sum of
the second and third equation for the second equation, we transform this system with allowance for equali-
ties (1.7) and (1.8) and the designations for the local dimensionless numbers*

R B Ly
to the dimensionless form

w"';“’» R,— wi;‘”’) R, +CRp1C1=0 (1.9)
5 <vr;¢'> R, 2 <Z-,.;¢’> R+ (Ko, ; (v, "™) Ry 4 C) _%(k Ry (1.10)
2 <UV;@,> B, +2<%§¢_'> By + iviaji (kRg +61)—% (k—c)Rg=0 (1,11)
Qévr’) (kR + 1) —2 wx;@’) Ry —0 (1.12)
<vog~),’>(Rl+Rw,)+<~%(kRE +e)=0 {1.13)
<vr;;“’,>(k3E +cl)+<<vlf:'2> (R, + R, — <”’2> AR, =0 (1,14}

It should be noted that Eq. (1.9) is the total energy-balance equation of flow turbulence. In the approx-
imation under consideration, it follows from this equation that energy generation and dissipation play the
principal role in the turbulent energy balance. The quantities are approximately alike in the greater por-
tion of the channel cross section, so that turbulence is almost in the state of energy equilibrium,

System (1.9)-(1.14) consists of six equations and contains eight unknowns (< Vi'Vi'>, <V > and ). In
view of this, the system must be extended to include the equation for the mean flow

*The dimensionless number

2 d <v$>
="V dr

is analogous to local Reynolds number

2 d {v,>

first introduced by Loitsyanskii [9].
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which after single integration and utilization of the designations previously introduced takes the form

v, v, v N2\
Rwl"‘Rl_l'TREz:(v ) <—r_> (1.15)
Furthermore, it is necessary to determine the scale of turbulence [ .

By solving the system of equations (1.9)~(1,14), it is not difficult to obtain

v *s(k —¢) R 2(cRg o) (R, + Ry) (1.16)
(0, DIE = (iRg + C1) (R — B,)(RRg +c1)
- Yok —0) Bl 4(Rg+ea)Ry  (CRp+a)(kRg +a)
N E =GR T (R, T Ry T (B = B )R o) (R — B ) (R + By (1.17
r,,D @2 <9,D
= E I (1.18)
w,v,> CRp 4 a
(vx’vr’> = <z;x'y¢’> =0, rE S, m (L 19)
Ya(k—c) Ry (R — R\
8By (B, F By) + (Ep e “fe o (1.20)

The left- and right-hand sides of Eq. (1.20) represent in dimensionless form the generation and
dissipation of pulsation energy.

2. Flow Region at the Channel Walls, The inequality <v,> /r «d <V >/dr holds at the channel walls,
and consequently Ry » Rj- Making use of these inequalities, we transform relations (1.16-1.20) to the

form

X [2/3(}5/0—1)}?13 2(Rg +afe) 1 Ry (2.1)
Uoi” = | o) By F-orje + (k/0) RE+cl/c] T
. {2/3(k/c'—1)RE ]‘/2 Ry (2.2)
Ty = (kjo) R +-erfe | m;*
. [ s(k/c~—1) Ry 2(Rg + /) ]"2 Ry (2.3)
Yai | T (k[)Rg +eaje  (k[e) Rg teje ] Mt
CR, ¢y R;?
<vx’vr >y == <Z’x’”:p’> =0, vi” = ———E‘;?l——l— (T}i:.—); (2°4)

Yo (k— ) RgR?
W:CRE—!—Q (2.5)

Let us also express through Rg, Ry, and n'{ the quantities

fg g

= w = (i=1,2) (2.6)

,1)i+1

)
L
£ = (n; ")

Here, ¢ = <v >/v* i Vki = \f'ri /p is the dynamic velocity, 7, and T, are the shear stress at the ro-
tating and stationary channel walls, respectively

B — 11/1? ’ nf_liﬂ, m:yz*i
Assuming that
vy =—¢ d;:¢> (2.7
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(¢ is the turbulent kinematic viscosity coefficient), and taking Eq. (2.4) into account, we obtain

e (cRg+a)Rg? (2.8)
v ORE

Neglecting the term associated with the influence of physical viscosity (c¢; = 0) in equality (2.4), and
making use of relation (2.5), the correlation < vr',v¢' > in the region of fully developed turbulent flow at
the walls may be written as

d<vy) (2.9)
dr

BT X Lt ) o B
—p <vr v, > = 11:3/6 plz e

Since in relations (1.7) and (1.8) the scale of turbulence ! is defined with an accuracy to within a con-
stant factor, from the selection of which depend the values of the constants k, ¢, and ¢{, we set [8]

s (kfc— 1) . 2.10)

k3¢ -

In this case equality (2.9) takes the form of the well-known Prandtl formula; according to Prandtl,
one may also set [ = ny, where % = 0.4. With the aid of relation (2.10), the coefficients k and ¢ may be
replaced by their ratio k/c

s (k/c — DI o [Ya(kfe — 17

BETTTRE 0 O TG

thereby reducing the number of empirical constants.

To calculate the principal characteristics of annular turbulent flow, it is necessary to establish the
dependence of Ry, Ry and nl on the nj-coordinate. Here, the relationship between the numbers RE and Ry,
obtained from formula (2.5) with allowance for (2.10), has the form

01) [HE + o /e (2.11)
Ry :

The results of calculations from formula (2.11) for values of the constants k/c = 7 and ¢; = 2.5 (se-
lected as in [8], which deals with the flow in a rectilinear tube) are shown in Fig. 1 (curves I and II).

Substituting < v 'vy,' > from (2.4) into Eq. (1.15) and taking into account relation (2.11), we trans-
form (1.15) as follows:

‘ Rg? (CRyp +¢1)

ZTT:”‘WWZ

(2.12)

Since the relationship between Ry and Ry is known, we can represent the left-hand side of Eq. (2.12)
as a function of Rg

R (eRy +a) 2.13)
R, -+ —-‘%ﬁ —F(R) (
which is shown in Fig, 1 (curve III). Then, having found from the relation
—_ 3/_21152 = F (RE) (2- 14)

the distribution of the dimensionless number R; over the channel cross section, it is not difficult to calcu-
late from formulas (2.1), (2.8) the remaining characteristics of the flow, including the velocity profile at
the wall.

3. Turbulent Flow Core. Inthe turbulent flow core, where the motion is close to potential rotation
[ 5] governed by the law

Cogor = cquyry = const (e = 0.55) (3.1)
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Fig. 2. Generalized dimension-
less velocity profile ¢(n): the
solidcurves are reference curves;
I and II refer to calculations
from formula (3.18) for i = I'and
2, respectively; 1 and 3 refer to
measurements at the rotating wall;
2 and 4 refer to measurements at
the stationary wall.
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Fig. 3. Distribution of the pulsa-
tion intensity of tangential veloc-
ity component over the channel
cross section,

(vy is the rotational speed of the cylinder), the mean vorticity of the
flow 1/r (d < vy > r/dr) is very low, and consequently we may set

21 d
Rt Ry= L L5 n =0 (3.2)

Oun the other hand, in the turbulent flow core, the terms asso-
ciated with the action of viscosity forces (c; = 0) may be neglected.
In this case, relations (1.16) (1.20) may be written in the form

R
v:pi* — k‘/zc‘/s% (3-3)
i
/s R Yz
v ¥ oo kc%—-éc ot ﬁ
i kRE T)f (3‘4)
) 462/3}?0)1 s RE
vt :{2~2k0’/‘+ e (3.5)
R.2
e e P
o p>=<v 9> =0, p*t=c¢ (n P (3.6)
R, —R — ‘/sR .
wl 1=¢7 g (3.7
E* = Mg
0" (3.8)

After substitution of < v,'vp'> and Ry from formulas (3.6) and
(3.7), the equation of mean motion (1.15) takes the form

n;"

c‘/a RE :?/—rl- (399)

From (3.6) and (3.7) it is not difficult to obtain an expression
for the shear stress

T = — (v, v, > = pl?

dr r dr r dr r

Lo Col(llr ) (202 00) (30

which for <v, > /r «d< vy, > /dr (at the wall) reduces to the pre-
viously obtained formula (2.9).

Asg in [10], we assume that in fully developed annular turbulent
flow, the scale of turbulence [ is proportional to the radius

[=ar 7l (3.11)

o =—
’ 2cov1

Here, the constant @ is determined from relations (3.1), (3.9),
and (3.10).

Making use of relations (3.7), (3.11), we write formulas (3.3),
(3.8) 1n final form:

% 1/, _1/ 1
Vi =E T T (3.12)
. ", 20"/2 C—‘/a
== (3.13)
R . 26 Y2 c—l/a

) :[2——2]%:/-”—!—71 r—/a— (3014)

XY 1
o = T (3.15)

s
B =7 (3.16)
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Fig. 4. The distribution of
total turbulent energy (curve
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Fig, 5. Distribution of the
turbulent viscosity coefficient
over the channel cross sec~
tion: solid line — experiment;
dashed line — calculations.
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Fig. 6. Distribution of
the pulsating-energy-
balance components in
the flow region at the
rotating wall. The solid
lines are theoretical
curves; (1) generation —
dissipation; (2) contri~
bution of the action of
viscosity on large-scale
pulsating motion to dissi-
pation,

We determine the turbulent viscosity coefficient ¢ from Eq. (3.10)
by substituting into it the values of I and < Vg > from equalities (3.11)
and (3.1):

e 1 R* L Ul V,ely
- =5 <R == > {3.17)

Integrating Eq. (3.9) with allowance for relation (3.11), we obtain
the velocity distribution in the turbulent flow core

*

1 1
[RY— (=) " [RT—(— 1)y ]2

? - P
R++(_1)1+1ni - R++(__1)i+lni*

— CDRO {

}-(3.18)

where Ry = vyry/v; ¥ = y*y /v is the value of the generalized coordi-
nate at the boundary layer interface; and r* =r; + ~ni+ lyx (i=1, 2):
@* is the velocity at this interface.

4. Comparison with Experiment. In Figs. 2-6, the computational
relations are compared with results of experimental studies of the hydro-
dynamics of turbulent annular flow in channels with an inner rotating cyl-
inder [5, 11].

Figure 2 shows the universal velocity profile ¢ plotted from for-
mulas (2.6) and (3.18), which correlates well with experiment. As in [8],
the separation of the flow into a laminar sublayer, a transition region and
a turbulent core derives directly from the initial system of equations,
without any special assumptions.

The distribution over the channel cross section, of the pulsation in-
tensity of the components of the velocity vector v;:*, the total turbulent
energy E* the correlation v.**, and the turbulen% viscosity coefficient
£ /v, obtained from formulas (2.1), (2.8), and (3.12), (3.17), are also in
good agreement with experiment (Figs. 3, 5).

Figure 6 shows the distribution of the pulsating-energy-balance
components at the rotating wall. The same pattern occurs at the station-
ary wall. In addition to the good correlation between the theoretical
curve and the experiments, the close conformity between the distribu-
tion pattern obtained and the corresponding pattern for rectilinear flows
is noteworthy.
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